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Titanium and niobium are members of the reactive
metals, which have the unique property of taking on
color when exposed to electricity or heat. Ring styles
that have color are available in any of the following
shades:

Shipping
1 2 34567890l

You may use the numbers to specify which shade you
want. In addition, niobium inlays in ring styles such as
Newport or Nikolai can also be charcoal gray or multi- Secure

colored. If you are unsure, contact us for options on Payments

specific ring styles.
: = PayPal

If a ring shows the color you want, simply order that
ring. You may specify a different color by contacting
Search us before or after you place your order. If a ring
indicates color is available but color is not shown in the
ring picture, contact us before you place your order to

:] find out what options are available for that ring style Details

v Description

: Sizing:
— »Type of Ring—— —
" g Durability of the Colors i
» Keywords

) Free Shipping
— » Color Available? — ) ) and Other
You cannot scratch off the color with a fingernail, and Ordering

the color will not fade from sunlight or solvents, Informétion
including acetone. Color that is anodized onto smooth Engraving: Free
L . . Inside all Rings
titanium or niobium could scratch off with a sharp

. ) . Quality Titanium,
object. That's why when we color our rings we use Niobium and

either narrow, deep grooves that will trap the color or Platinum
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An oxide film can be grown on certain metals - aluminum, niobium, tantalum, titanium, tungsten,
zirconium - by an electrochemical process called anodizing, For each of these metals there are
process conditions which promote growth of a thin, dense, barrier oxide of uniform thickness, The
thickness of this layer and its properties vary greatly depending on the metal, with only the alurminurm
and tantalum (and recently niobium) films being of substantial commercial and technological
importance as capacitor diefectrice, Aluminum is unique armong these metals in that, in addition to
the thin barrier oxide, anodizing aluminum alloys in certain acidic electrolytes produces a thick oxide
coating, containing a high density of microscopic pores, This coating has diverse and important
applications including architectural finishes, prevention of corrosion of autorobile and aerospace
structures, and electrical insulation, In fact, it is this porous coating that is most often thought of as
the product of anodizing, Since both barrier and porous oxides can be grown on aluminum, we will
use that metal for most of the examples in the discussion that follows, The same principles hold for
the growth of barrier oxide on other metals,

In an anodizing cell, the alurinum workpiece is made the anode by connecting it to the positive
terminal of a dc power supply, The cathode is connected to the negative terminal of the supply, The
cathode is a plate or rod of carbon, lead, nickel, stainless steel - any electronic conductor that is
unreactive (jnert) in the anodizing bath, When the circuit is closed, electrons are withdrawn from the
metal at the positive terminal, allowing ions at the metal surface to react with water to form an oxide
laver on the metal, The electrons return to the bath at the cathode where they react with hydrogen
ions to n;ake hydrogen gas, (See the Appendix for the chemical reactions occurring during this
process,

Bath electrolytes are selected in which the oxide is insoluble, or dissolves at a slower rate than it
deposits, and then an adherent oxide layer grows, The bath composition is the primary determinant
of whether the film will be barrier or porous, Barrier oxide grows in near neutral solutions in which
alurinurmn oxide is hardly soluble, most commonly ammoniurn borate, phosphate, or tartrate
compositions, Porous oxide grows in acid electrolvtes in which oxide can not only be deposited but
also dissolves, The most widely used bathis dilute sulfuric acid, typically about 1 molar or 10 weight
percent concentration, Other baths used for particular applications are made with oxalic acid or
phosphoric acid,

Barrier oxides
Metals that can be anodized also react readily {oxidize) with

oxygen in air, so that under ambient conditions the surface
is always covered with a thin oxide film, The details of film

structure and composition depend on the history of
exposure to the ambient atmosphere but, on aluminum,
there is always a barrier oxide layer next to the metal that is
2-3 nm thick, The barrier oxide stabilizes the surface
against further reactions with its environment and is an
excellent electrical insulator, When an aluminum piece
covered with this oxide is made the anode in an electrolytic
H,0 cell, containing, say, a borate electrolyte, no significant
current flows until the voltage is raised to between 1 and 2
volt, This oxide supports an electric field {voltsAhickness)
of order 1 ¥/nm., a very high field indeed, If this were
electronic current then water would be oxidized to evolve
oxygen, But oxygen evolution is not seen — it does not
occur because the oxide blocks electrons moving in the
direction from electrolyte to metal, The voltage across the
oxide can be increased, without initiating current flow, until
the field in the oxide is large enough to drive aluminum and
oxygen ionsthrough the oxide, The current through the
oxide is an ionic current and these ions react to form the
oxide layer, The process of high-field ionic conduction is
central to anodization, Oxide anions move inward to react with aluminum at the metal/oxide
interface to form oxide, Aluminum cations move outward from the metal to react with water at the
oxide/electrolyte interface to form oxide at that surface, & the cathode, the circuit is completed by
the reduction of hydrogen ions to hydrogen gas, New oxide deposits at both oxide interfaces, as
ilustrated in Figure 1, {See the Appendixfor the chemical reactions occurring during this process,)
The rate at which the oxide thickens is proportional to the current density (4/cm?), The field in the
oxide does not change with oxide thickness, and has only a small dependence on current density
and termperature, As the oxide thickens the voltage across the oxide increases proportionally, and at
room temperature the thickness/voltage ratio is close tol,2 nm/Y, Thickness is very uniform across
the surface because everywhere the voltage drop must be the same,

Electrolyte

Fig. ! Sketch Hlustrating ion
franspoif through the oxide fifm.

For each bath composition and temperature, there is a maximum voltage that can be supported
before breakdown occurs, At breakdown, reactions other than oxide growth occur: oxygen
evolution, solute oxidation, or sparking due to electron avalanche through the oxide, The more dilute
the electrolyte concentration, the higher the breakdown voltage, and the highest voltage that is
reached in agueous electrolytes is about 1000 ¥, & this voltage the barrier oxide is about one um
thick, 300 to 500 times thicker than the ambient native oxide,

Barrier oxide deposited on clean aluminurm at room
ternperature has an amorphous (non-crystalline)
structure, that is, its x-ray diffraction pattern is a diffuse
halo, Figure 2 shows a cross section of an amorphous
oxide grown at afixed current density of 10 mé&/cm? in
0.16 Marnmonium tartrate at 20°C (63°F) to a voltage
of 200 V. The oxide thickness is 220 nm, equivalent to
1.1 nm/V. &s expected for an amorphous structure,
there are no distinguishing structural features, The
micrograph in Figure 2 (and also in Figure 3) was
obtained using a transmission electron microscope,
which can show fine detail at very high magnification,

Fig. 2 Crose section of amorphous
barrier axide (From 8.C Fumnesux, G £
Thompeon, and G.C. Wood Corrozion
Science, Vol 18, p 853 1978}

Modifying the initial
native oxide in
certain ways, for
example, by heating
in air at high
ternperature, and




Plane view and cross section of crystalline barrier oxide




Porous oxide







Self-ordered porous alumina
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Anodizing

Original Barrier type Cellular oxide layer
metal part oxide layer
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Cellular oxide layer
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anodic coating + sealing

Color-two-step process

Sandalor process +
Color-two-step process

' ' ' i sealing
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The most simple process takes place in boiling, deionized water. Other solutions with a
variety of additions of sealing salts can be applied. The most common ones are:

Hot DI sealing

Mid-temperature sealing
Cold sealing

When Hot DI sealing, the anodized part is immersed into hot (96 — 100°C / 205 -

212°F)deionized water and a hydrated aluminum oxide, boehmite, will be formed in the
pores, see the drawing below.

R— A1O3+HO — 2 AI0O0H

This process is very dependent of the
temperature and pH of the sealing solution.
SEEEE Seeemae e 2 Sealing at 96°C (210°F) requires about 6%
| HOE H [ e longer sealing time than 98°C (210°F).

http://aluminumsurface.blogspot.kr/2009/04/why-sealing-process-is-so-important.html



This dependency of the temperature makes mid-temperature sealing, which works at
60 - 80°C (160 - 180°F), a little more prone to leaching of colors.These solutions often
contains metal salts and organic additives, but has a lower energy cost.The process is still
using the fact that aluminum oxide is hydrated to boehmite.

Cold sealing uses a totally different mechanism than the other two. In this process the

sealing happens by an impregnation process at 25 — 30°C (70 — 90°F). The following is
suggested to happen; the fluoride in the solution dissolve the porous anodized layer and
then deposit as a fluoro-aluminate at the top 3 — 6 ym (0.1 -0-2 mil) of the layer, as

NiF; + AbO3 + 3H0 — NiAL(OH)gF2

This process is very slow, so a warm water rinse after the sealing will accelerate the
impregnation process.

http://aluminumsurface.blogspot.kr/2009/04/why-sealing-process-is-so-important.html



PAO (plasma assisted oxidation), PEO (plasma electrolytic oxidation)
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PEO process of Al alloy, mode: AC-packet + cathodic half-waves packet

https://www.youtube.com/watch?v=bqCnSs9MrDo
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https://www.youtube.com/watch?v=0O0GQPHh3Szk



