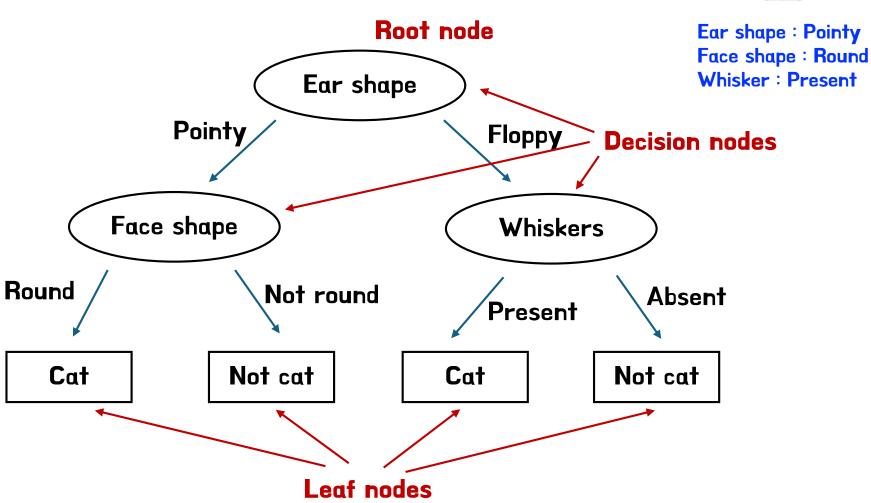
Machine Learning 11

Kihyun Shin DMSE, HBNU

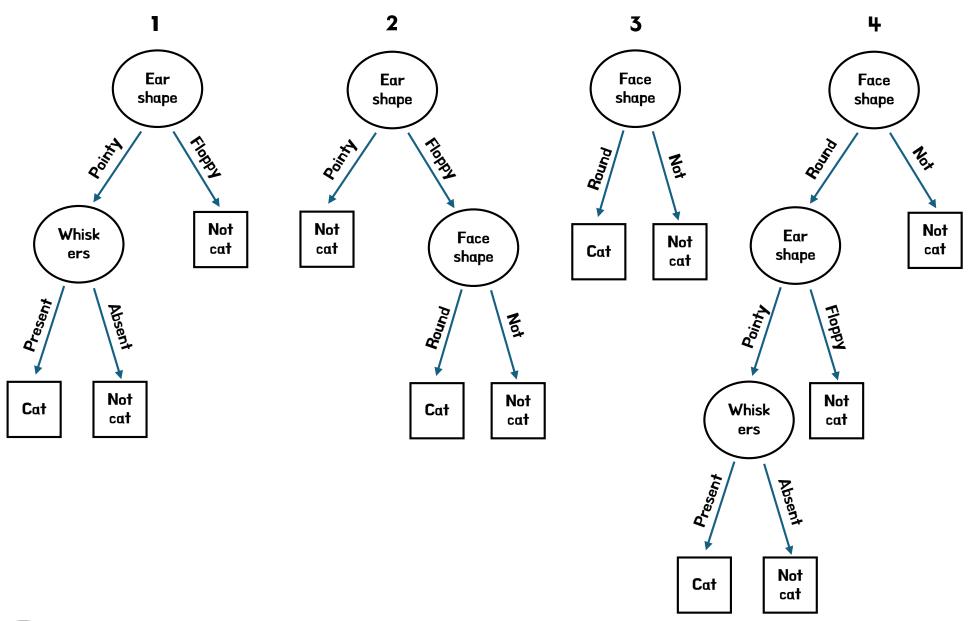
Decision tree

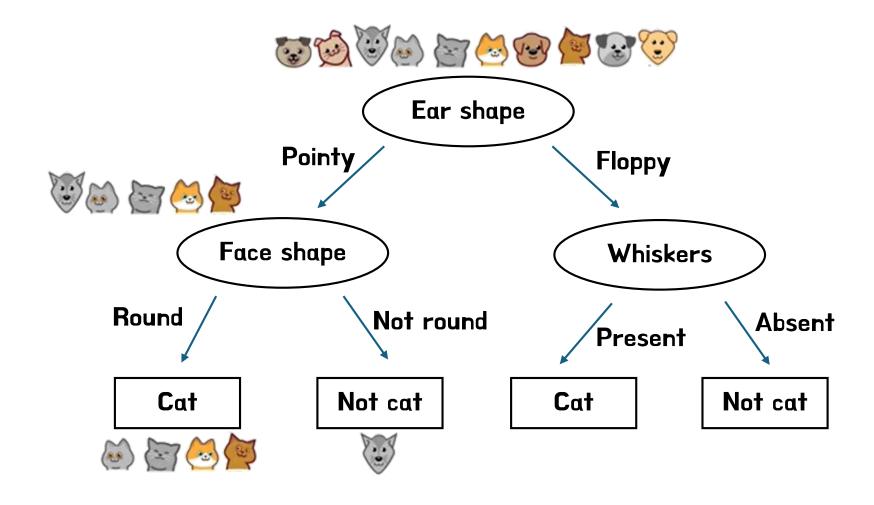
Cat classification example

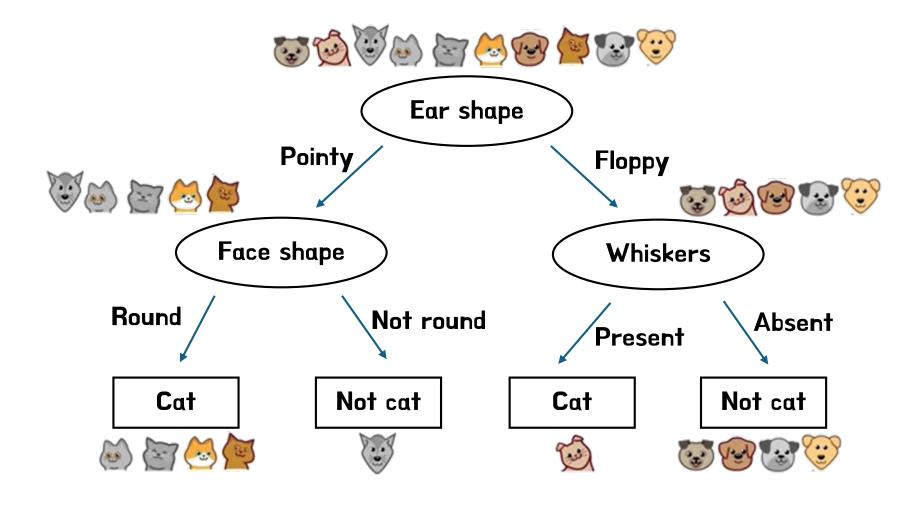
	Ear shape (x_1)	Face shape (x_2)	Whiskers (x_3)	Cat (y)
E7	Pointy	Round	Present	1
	Floppy	Not round	Present	1
3	Floppy	Round	Absent	0
()	Pointy	Not round	Present	0
(E)	Pointy	Round	Present	1
()	Pointy	Round	Absent	1
	Floppy	Not round	Absent	0
(E)	Pointy	Round	Absent	1
(Jegy	Floppy	Round	Absent	0
	Floppy	Round	Absent	0

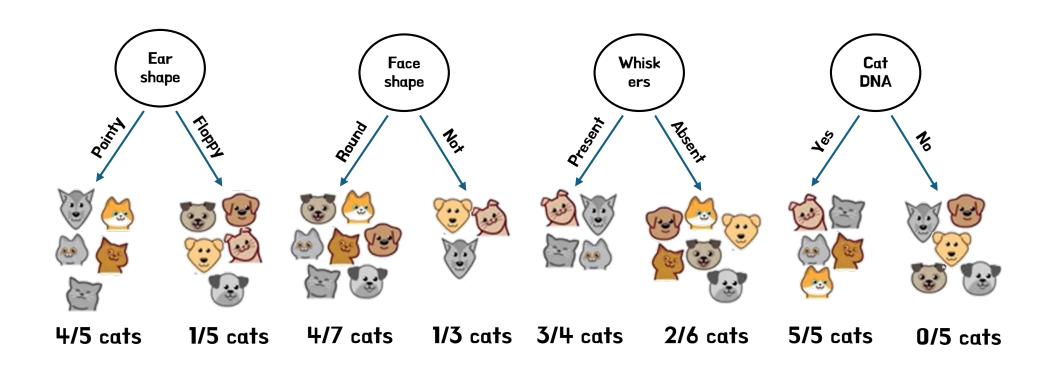

Currently, Features are binary

Decision tree


New test examples

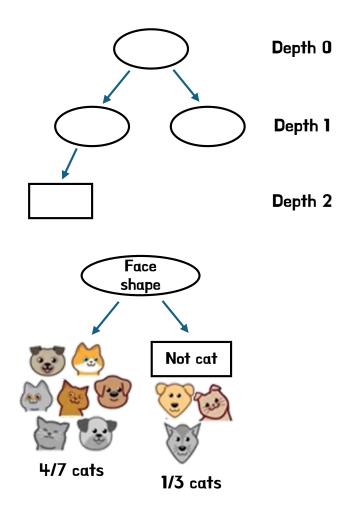



Decision tree



Decision 1: how to choose feature to split on at each node?

- Maximize purity (or minimize impurity)



Decision 2: When do you stop splitting?

- When a node is 100% one class
- When splitting a node will result in the tree exceeding a maximum depth
- When improvements in purity score are below a threshold
- When number of examples in a node is below a threshold

We can chose the depth

- Too deep: overfitting
- When do we have to stop?

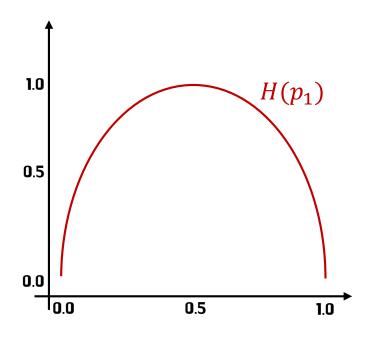
Entropy as a measure of impurity

 p_1 = fraction of examples that are cats

 $p_1 = 2/6$ $H(p_1) = 0.92$

$$p_1 = 5/6$$
 $H(p_1) = 0.65$

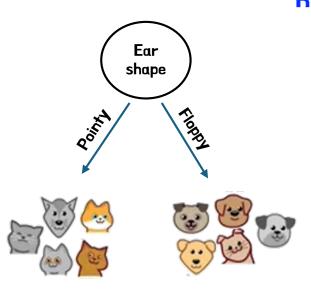
Cat

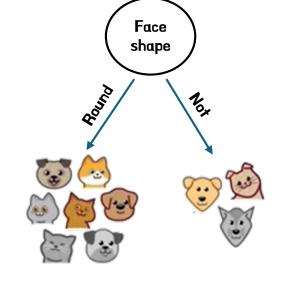


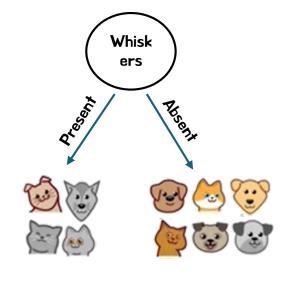
$$p_1 = 6/6$$
 $H(p_1) = 0$

Entropy as a measure of impurity

 p_1 = fraction of examples that are cats


$$p_0 = 1 - p_1$$
 (fraction of example that are not cats)


$$H(p_1) = -p_1 \log_2(p_1) - p_0 \log_2(p_0)$$
$$= -p_1 \log_2(p_1) - (1 - p_1) \log_2(1 - p_1)$$


***Note**: $0 \log_2(0) = 0$

Choosing a split

Root node: $p_1 = \frac{5}{10} = 0.5$ H(0.5) = 1

$$p_1 = 4/5 = 0.8$$
 $p_1 = 1/5 = 0.2$

$$p_1 = 1/5 = 0.2$$

$$p_1 = 4/7 = 0.57$$

$$p_1 = 4/7 = 0.57$$
 $p_1 = 1/3 = 0.33$ $p_1 = 3/4 = 0.75$ $p_1 = 2/6 = 0.33$

$$p_1 = 3/4 = 0.75$$

$$p_1 = 2/6 = 0.33$$

$$H(0.8) = 0.72$$

= 0.28

$$H(0.2) = 0.72$$

$$H(0.57) = 0.99$$

$$H(0.33) = 0.9$$

$$H(0.57) = 0.99$$
 $H(0.33) = 0.92$ $H(0.75) = 0.81$

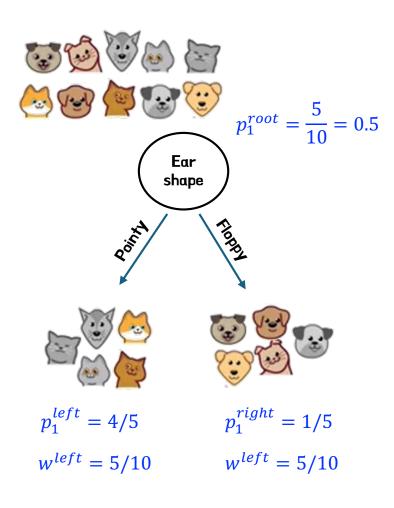
$$H(0.33) = 0.92$$

$$H(0.5) - (\frac{5}{10}H(0.8) + \frac{5}{10}H(0.2))$$

$$= 0.03$$

$$H(0.5) - (\frac{5}{10}H(0.8) + \frac{5}{10}H(0.2)) \qquad H(0.5) - (\frac{7}{10}H(0.57) + \frac{3}{10}H(0.33)) \qquad H(0.5) - (\frac{4}{10}H(0.75) + \frac{6}{10}H(0.33))$$

$$H(0.5) - (\frac{4}{10}H(0.75) + \frac{6}{10}H(0.33)$$


$$= 0.12$$

Information gain

Information gain (or entropy reduction)

$$= H(p_1^{root}) - (w^{left}H(p_1^{left}) + w^{right}H(p_1^{right})$$

- Start with all examples at the root node
- Calculate information gain for all possible features, and pick the one with the highest information gain
- Split dataset according to selected feature, and create left and right branches of the tree
- Keep repeating splitting process until stopping criteria is met:
 - When a node is 100 % one class
 - When splitting a node will result in the tree exceeding a maximum depth
 - Information gain from additional splits is less than threshold
 - When number of examples in a node is below a threshold

Features with three possible values

	Ear shape (x_1)	Face shape (x_2)	Whiskers (x_3)	Cat (y)
	Pointy	Round	Present	1
	Ovαl	Not round	Present	1
3	Ovαl	Round	Absent	0
()	Pointy	Not round	Present	0
	Ovαl	Round	Present	1
	Pointy	Round	Absent	1
3	Floppy	Not round	Absent	0
1	ΟναΙ	Round	Absent	1
()	Floppy	Round	Absent	0
③	Floppy	Round	Absent	0

Features are not binary (three possible values)

One hot encoding

	Ear shape $\frac{(x_{\pm})}{(x_{\pm})}$	Pointy ears	Floppy ears	Oval ears	Face shape (x_2)	Whiskers (x_3)	Cat (y)
3	Pointy	1	0	0	Round	Present	1
	Oval	0	0	1	Not round	Present	1
	0val	0	0	1	Round	Absent	0
	Pointy	1	0	0	Not round	Present	0
(E)	Oval	0	0	1	Round	Present	1
	Pointy	1	0	0	Round	Absent	1
3	Floppy	0	1	0	Not round	Absent	0
March Marc	Oval	0	0	1	Round	Absent	1
(Ver	Floppy	0	1	0	Round	Absent	0
3	Floppy	0	1	0	Round	Absent	0

Features are not binary (three possible values)

One hot encoding

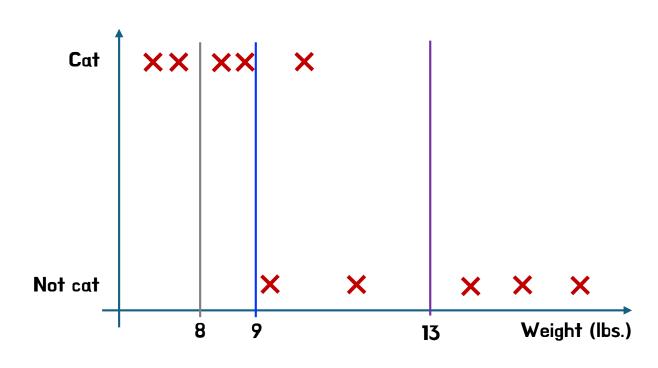
If a categorical feature can take on k values, create k binary features (0 or 1 valued).

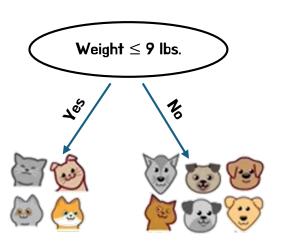
One hot encoding and neural networks

	$\frac{Ear\ shape}{(x_{\pm})}$	Pointy ears	Floppy ears	Ov al ears	Face shape (x_2)	Whiskers (x_3)	Cat (y)
3	Pointy	1	0	0	Round	Present	1
	Oval	0	0	1	Not round	Present	1
	0val	0	0	1	Round	Absent	0
	Pointy	1	0	0	Not round	Present	0
	Oval	0	0	1	Round	Present	1
	Pointy	1	0	0	Round	Absent	1
(B)	Floppy	0	1	0	Not round	Absent	0
1	Oval	0	0	1	Round	Absent	1
()	Floppy	0	1	0	Round	Absent	0
3	Floppy	0	1	0	Round	Absent	0

One hot encoding and neural networks

	Pointy ears	Floppy ears	Oval ears	Face shape (x_2)	Whiskers (x_3)	Cat (y)
3	1	0	0	1	1	1
(V)	0	0	1	0	1	1
3	0	0	1	1	0	0
	1	0	0	0	1	0
	0	0	1	1	1	1
	1	0	0	1	0	1
3	0	1	0	0	0	0
1	0	0	1	1	0	1
(Very	0	1	0	1	0	0
3	0	1	0	1	0	0




Continuous features

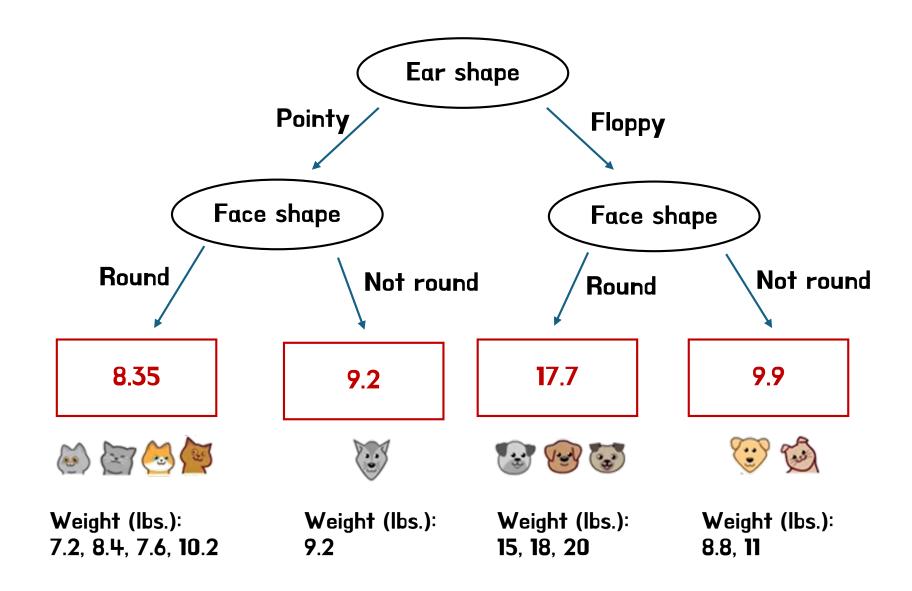
	Ear shape (x_1)	Face shape (x_2)	Whiskers (x_3)	Weight (lbs.)	Cat (y)
3	Pointy	Round	Present	7.2	1
	Floppy	Not round	Present	8.8	1
•	Floppy	Round	Absent	15	0
8:3	Pointy	Not round	Present	9.2	0
(i)	Pointy	Round	Present	8.4	1
	Pointy	Round	Absent	7.6	1
	Floppy	Not round	Absent	11	0
(E)	Pointy	Round	Absent	10.2	1
()	Floppy	Round	Absent	18	0
	Floppy	Round	Absent	20	0

Splitting on a continuous variable

$$H(0.5) - \left(\frac{2}{10}H\left(\frac{2}{2}\right) + \frac{8}{10}H\left(\frac{3}{8}\right)\right) = 0.24$$

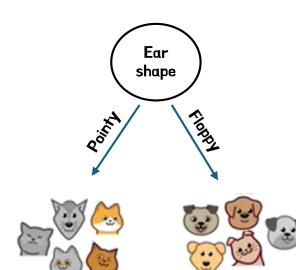
$$H(0.5) - \left(\frac{4}{10}H\left(\frac{4}{4}\right) + \frac{6}{10}H\left(\frac{1}{6}\right)\right) = 0.61$$

$$H(0.5) - \left(\frac{7}{10}H\left(\frac{5}{7}\right) + \frac{3}{10}H\left(\frac{0}{3}\right)\right) = 0.40$$


Regression with decision trees

	Ear shape (x_1)	Face shape (x_2)	Whiskers (x_3)	Weight (lbs.)
(3)	Pointy	Round	Present	7.2
	Floppy	Not round	Present	8.8
•	Floppy	Round	Absent	15
	Pointy	Not round	Present	9.2
(i)	Pointy	Round	Present	8.4
()	Pointy	Round	Absent	7.6
	Floppy	Not round	Absent	11
(E)	Pointy	Round	Absent	10.2
(Jegy	Floppy	Round	Absent	18
	Floppy	Round	Absent	20

 χ


Regression with decision trees

Choosing a split

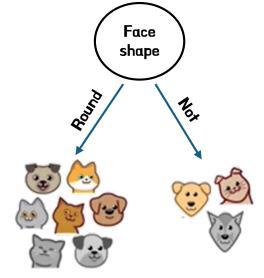
Variance at root node: 20.51

Weights: 7.2, 9.2, 8.4, 7.6, 10.2

Variance: 1.47

 $w^{left} = 5/10$

 $w^{right} = 5/10$



Weights: 8.8, 15, 11, 18, 20

Variance: 21.87

$$v^{right} = 5/10$$

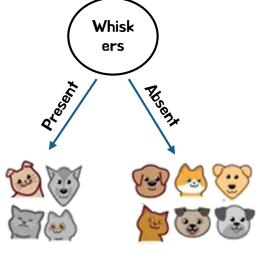
= 8.84

Weights:

8.8, 9.2, 11

Variance: 1.37

 $w^{right} = 3/10$


Weights: 7.2, 15, 8.4, 7.6, 10.2, 18, 20

Variance: 27.80

$$w^{left} = 7/10$$

$$20.51 - \left(\frac{5}{10} * 1.47 + \frac{5}{10} * 21.87\right) \qquad \qquad 20.51 - \left(\frac{7}{10} * 27.80 + \frac{3}{10} * 1.37\right)$$

= 0.64

Weights: 7.2, 8.8, 9.2, 8.4

Weights: 15, 7.6, 11, 10.2, 18, 20

Variance: 0.75

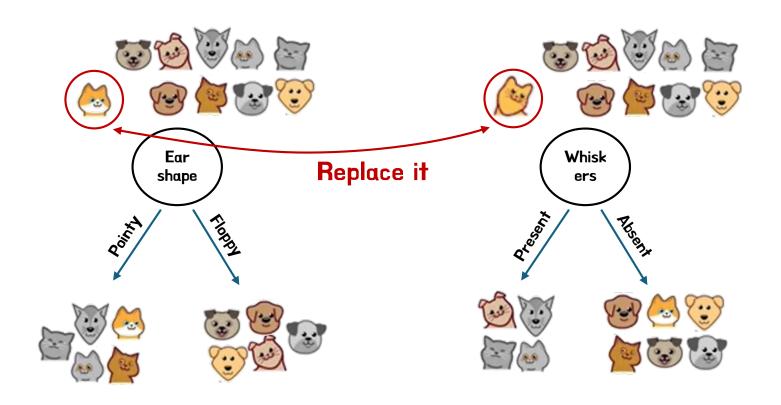
Variance: 23.32

$$w^{left} = 4/10$$

$$w^{right} = 6/10$$

$$20.51 - \left(\frac{4}{10} * 0.75 + \frac{6}{10} * 23.32\right)$$

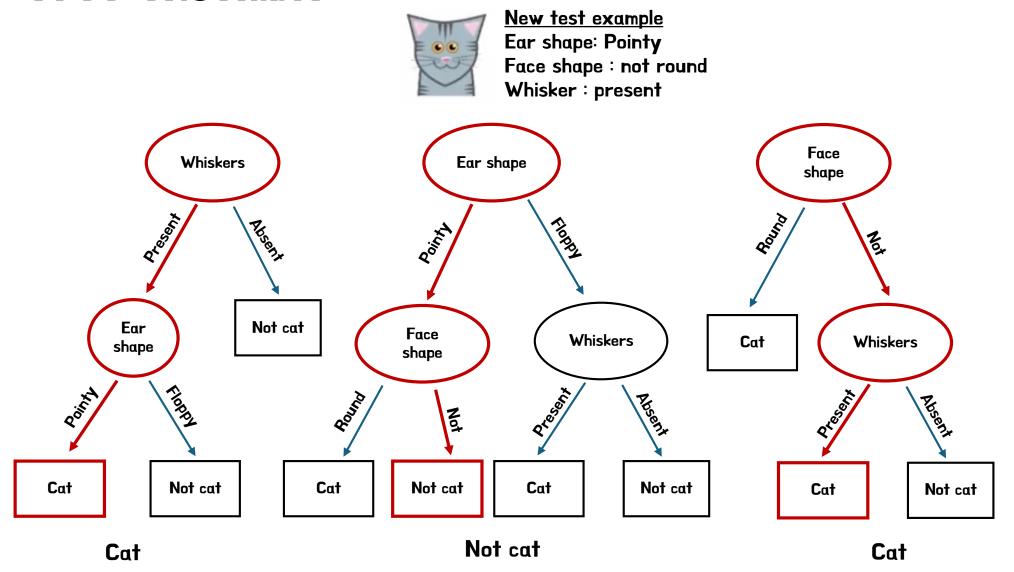
= 6.22



Tree ensembles

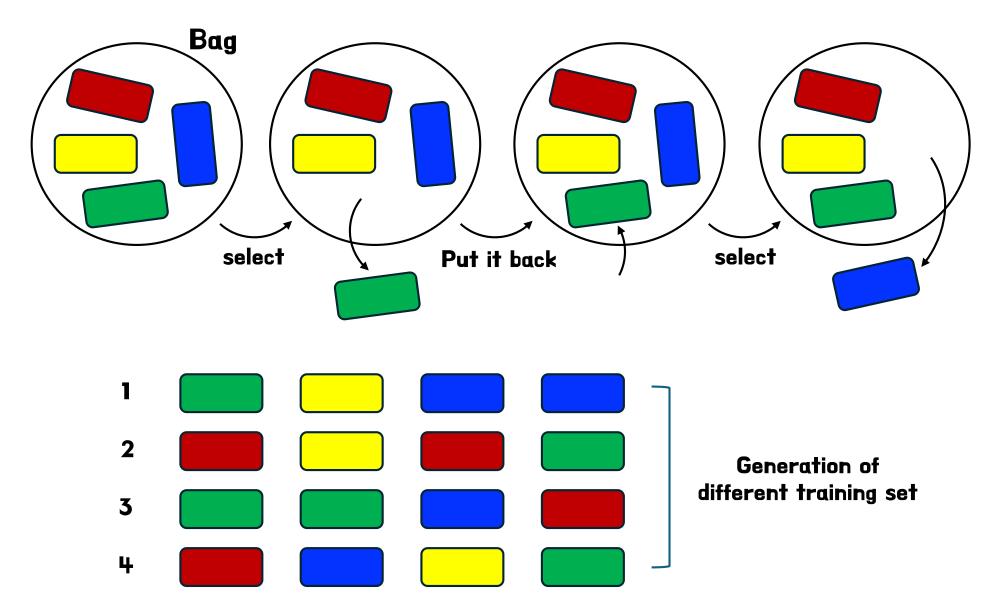
Tree ensemble

Highly sensitive to small changes of the data



Single data change \rightarrow change of optimal tree

Using collections of tree will be better

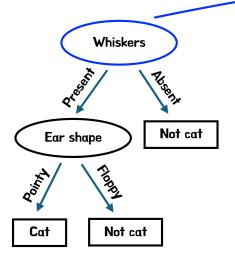

Tree ensemble

Prediction based on voting

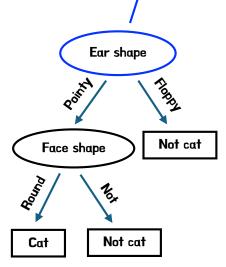
Sampling with replacement

Sampling with replacement

	Ear shape (x_1)	Face shape (x_2)	Whiskers (x_3)	Cat (y)
3	Pointy	Round	Present	1
(E)	Floppy	Not round	Absent	0
(W	Pointy	Round	Absent	1
F. 3	Pointy	Not round	Present	0
(E)	Floppy	Not round	Absent	0
	Pointy	Round	Absent	1
	Pointy	Round	Present	1
	Floppy	Not round	Present	1
3	Floppy	Round	Absent	0
(E)	Pointy	Round	Absent	1
		-	•	<u>-</u>


Random forest: generating a tree sample

Given training set of size m


For b = 1 to B (usually 100)

- Use sampling with replacement to create a new training set of size $oldsymbol{m}$
- Train a decision tree on the new dataset

Ear shape (x_1)	Face shape (x_2)	Whiskers (x_3)	Cat (y)
Pointy	Round	Present	1
Floppy	Not round	Absent	0
Pointy	Round	Absent	0
Pointy	Not round	Present	0
Floppy	Not round	Present	1
Pointy	Round	Absent	0
Pointy	Round	Present	1
Floppy	Not round	Absent	0
Floppy	Round	Absent	0
Pointy	Round	Present	1

Ear shape (x_1)	Face shape (x_2)	Whiskers (x_3)	Cat (y)
Pointy	Round	Present	1
Floppy	Not round	Absent	0
Pointy	Round	Absent	1
Pointy	Not round	Present	1
Floppy	Not round	Present	0
Pointy	Round	Absent	1
Pointy	Round	Present	1
Floppy	Not round	Absent	0
Floppy	Round	Absent	0
Pointy	Round	Present	1

Usually, root node

is identical

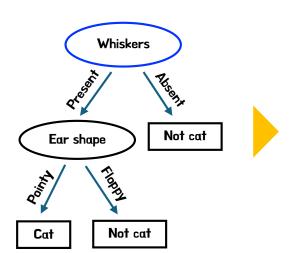
Random forest: random feature choice

At each node, when choosing a feature to use to split, if n features are available, pick a random subset of k < n features and allow the algorithm to only choose from that subset of features.

$$k=\sqrt{n}$$

Boosted trees intuition

Given training set of size m


For b = 1 to B

- Use sampling with replacement to create a new training set of size $oldsymbol{m}$

But instead of picking from all examples with equal (1/m) probability, make it more likely to pick misclassified examples from previous trained trees

- Train a decision tree on the new dataset

Ear shape (x_1)	Face shape (x_2)	Whiskers (x ₃)	Cat (y)
Pointy	Round	Present	1
Floppy	Not round	Absent	0
Pointy	Round	Absent	0
Pointy	Not round	Present	0
Floppy	Not round	Present	1
Pointy	Round	Absent	0
Pointy	Round	Present	1
Floppy	Not round	Absent	0
Floppy	Round	Absent	0
Pointy	Round	Present	1

Ear shape (x_1)	Face shape (x_2)	Whiskers (x_3)	Prediction	
Pointy	Round	Present	Cat	0
Floppy	Not round	Absent	Cat	X
Pointy	Round	Absent	Not cat	0
Pointy	Not round	Present	Not cat	0
Floppy	Not round	Present	Cat	0
Pointy	Round	Absent	Cat	X
Pointy	Round	Present	Cat	0
Floppy	Not round	Absent	Cat	X
Floppy	Round	Absent	Not cat	0
Pointy	Round	Present	Cat	0

XGBoost (eXtreme Gradient Boosting)

- Open source implementation of boosted trees
- Fast efficient implementation
- Good choice of default splitting criteria and criteria for when to stop splitting
- Built in regularization to prevent overfitting
- Highly competitive algorithm for machine learning competitions (e. g. Kaggle competitions)

Deep learning as well

Using XGBoost

Classification

from xgboost import XGBClassifier

model = XGBClassifier()

model.fit(x_train, y_train)
y_pred = model.predict(x_test)

Regression

from xgboost import XGBRegressor

model = XGBRegressor()

model.fit(x_train, y_train)

y_pred = model.predict(x_test)

Simple to use

Decision trees vs Neural networks

Decision trees and tree ensembles

- Works well on tabular (structured) data
- Not recommended for unstructured data (images, audio, text)
- Fast
- Small decision tress may be human interpretable

Neural networks

- Works well on all types of data, including tabular (structured) and unstructured data
- May be slower than a decision tree
- Works with transfer learning
- When building a system of multiple models working together, it might be easier to string multiple neural networks

